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Motivation

Action space of interactive theorem proving:

• Unbounded action space

• Commands of the prover (e.g., tactics with arguments)

• Theorem names

• Arbitrary terms of the background logic of the proof system

• Locations of application or substitution

• Computationally inefficient when planning

• Autoregressive generation
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Contribution

In this work we

• learn a high-level representation of actions by embedding the raw

action space into a latent action space, and

• learn a world model in the latent space for model-based

reinforcement learning, and

• learn a latent policy for planning in theorem proving.
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Method



Method — Encoder and Decoder

Learning a high-level representation by embedding the raw action space

into a latent action space:

• Encoderaction: action space → latent action space : α ∼ En(α|a).

• Decoderaction: latent action space → action space : â ∼ Dn(â|α).

3



Examples — Encoder and Decoder
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Method — World Model

Working with the latent action space requires more:

Latent State Space

• State encoder: zt ∼ En(zt |xt)
• State decoder: x̂t ∼ Dn(x̂t |zt)

Latent Dynamics

A neural network model to learn the internal dynamics of the theorem

proving engine, performing the deduction step of theorem proving.

• Latent transition operator: ẑt ∼ p(ẑt |zt−1, αt−1)
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Method — Objectives

Reconstruction Loss Lrec

encoded_action = encoder(raw_actions)

loss = CE(decoder(encoded_actions), raw_actions)

Forward Loss Lforward

• LCE : the cross-entropy loss between the ground truth next state and

the decoded predicted latent state

• LMSE : the mean squared error between the encoded ground truth of

next state and the predicted latent state
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Method — Objectives

Forward Loss Lforward

encoded_state = encoder(state)

encoded_action = encoder(action)

predicted_encoded = trans_op(encoded_state, encoded_action)

if using_CE:

predicted_next_state = decoder(predicted_encoded)

loss = CE(predicted_next_state, next_state)

elif using_MSE:

encoded_next_state = encoder(next_state)

loss = (predicted_encoded - encoded_next_state)^2
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Method — Objectives

Adding more semantic groundings for the latent state and action space:

L = Lrec(a) + Lrec(x) + Lforward .

The latent transition operator allows us to perform efficient planning in

the latent space — looking ahead by unrolling the state dynamics for a

number of steps.
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Method — Latent Policy

Fix the dynamics. From a given latent state, predict a latent action:

• Latent policy: αt ∼ p(αt |zt)

• LCE : the cross-entropy loss between the ground truth target action

and the decoded predicted latent action

• LMSE : the mean squared error between the encoded ground truth of

target action and the predicted latent action
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Experiments

• INequality Theorem proving benchmark (INT)

• 40000 proof trajectories

• cardinality of an axiom combination K = 3

• length of a proof L = 7

• 149009 distinct transitions

• A character-level transformer for the latent representations of both

state and action

• An MLP for internal dynamics (i.e., the transition operator) of INT
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Experiments — the INT Environment

INT is a simple and lightweight inequality theorem prover suitable for

prototyping our approach. An example proof trajectory in INT:

[{

"state": "to ((b+a)*(a+b))=(((b+a)*(b+a))*1)",

"action": "@G((b+a)*(a+b))=(((b+a)*(b+a))*~1)$",

"next_state": "to ((b+a)*(a+b))=((b+a)*(b+a))"

}, {

"state": "to ((b+a)*(a+b))=((b+a)*(b+a))",

"action": "@E((b+a)*~(a+b))=((b+a)*(b+a))$",

"next_state": "to ((a+b)*(b+a))=((b+a)*(b+a))"

}, {

"state": "to ((a+b)*(b+a))=((b+a)*(b+a))",

"action": "@A((a+b)*(b+a))=((b+~a)*(b+a))$",

"next_state": "QED"

}]
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Experiments — Transformer Configurations

• 256 embedding dimensions

• 8 attention heads

• 1024 hidden dimensions for position-wise feed-forward layers

• a maximum 128 tokens for both training and evaluation examples.
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Experiments — Quality of Latent Space

Metrics:

• How good are the encoders and decoders?

• BLEU scores of reconstructed states and actions

• How good is the transition operator?

• BLEU scores of (decoded) states predicted by the transition operator

in one step

• The change of BLEU scores when we look ahead for more steps

• How good is the latent policy?

• BLEU scores of predicted actions and resulting states predicted by

the transition operator in one step

• Accuracy of predicting ”QED”s
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Experiments

Table 1: Performance on the test set. BLEUrec−action (resp. BLEUrec−state)

denotes the BLEU score of the reconstructed actions. BLEUtrans denotes the

BLEU score of the predicted states by applying the transition operator once.

QED accuracy is the percentage of correctly predicted QEDs by applying the

transition operator once.

Methods BLEUrec−action BLEUrec−state BLUEtrans QED accuracy (%)

LCE 96.98 94.12 88.23 94.20

LMSE 73.87 69.38 60.18 0
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Experiments — Looking ahead
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Figure 1: Given a state s, we look ahead n steps by recursively applying the

transition operator to s and the subsequent ground truth actions corresponding

to s. Note the different scale on right for QED accuracy. Step 7 has a QED

accuracy instead of a BLEU score because all target states at step 7 are QEDs. 15



Experiments — Latent Policy

Table 2: Fix a transition operator learned with LCE . BLEUaction denotes the

BLEU score of the predicted actions. BLEUnext−state denotes the BLEU score of

the predicted next states by applying the transition operator once. QED

accuracy is the percentage of correctly predicted QEDs by applying the

transition operator once to the state and predicted action.

Methods BLEUaction BLEUnext−state QED accuracy (%)

LCE 86.73 76.05 18.60

LMSE 85.88 81.82 79.55
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