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Overview

I What
I Verified decision procedures for modal logics K, KT and S4
I Verified backjumping for modal logic K

I How
I Decision procedures as functions in Lean
I With soundness, completeness and termination proved

I Literature
I Tableaux based on sequent calculus given by Heuerding,

Seyfried, and Zimmermann (HSZ)
I Different proofs of correctness



Syntax

Definition (Syntax)
The syntax of formulas is given by the following grammar:

N ::= 0 | SN
ϕ ::= N | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | �ϕ | ♦ϕ

We work with a simpler language NNF given by the following
grammar:

N ::= 0 | SN
ϕ ::= N | ¬N | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ



Semantics
Definition (Kripke models)
A Kripke model is a triple (S,R, V ) where S is a set of states, and
R ⊆ S × S and V ⊆ N× S are two binary relations. A KT model
is a Kripke model whose R is reflexive. An S4 model is a KT model
whose R is transitive.

Definition (forcing)
Let M = (S,R, V ) be a Kripke model. The forcing relation  is
defined as follows:

(M, s)  n if V (n, s)

(M, s)  ¬n if (M, s) 6 n
(M, s)  ϕ ∧ ψ if (M, s)  ϕ and (M, s)  ψ

(M, s)  ϕ ∨ ψ if (M, s)  ϕ or (M, s)  ψ

(M, s)  �ϕ if for all t ∈ S,R(s, t) implies (M, t)  ϕ

(M, s)  ♦ϕ if there exists t ∈ S,R(s, t) and (M, t)  ϕ



Semantics

Definition (satisfiability)
Let M be a Kripke model. A state s ∈M satisfies a set Γ of
formulas, written (M, s) � Γ, if for all ϕ ∈ Γ, (M, s)  ϕ. A set Γ
of formulas is satisfiable if there is a Kripke state that satisfies it.
Otherwise, we say that Γ is unsatisfiable.



Calculus

Tableau for modal logic K:

(id)
n,¬n,Γ

unsatisfiable
(∧)

ϕ ∧ ψ,Γ
ϕ,ψ,Γ

(∨)
ϕ ∨ ψ,Γ
ϕ,Γ ψ,Γ

(K)
♦ϕ,�Σ,Γ

ϕ,Σ

Tableau for modal logic KT and S4:

(T )
�ϕ,Γ
ϕ,�ϕ,Γ

(S4)
♦ϕ,�Σ,Γ

ϕ,�Σ



Alternative form

(K)
♦ϕ,�Σ,Γ

ϕ,Σ

should be understood as

(K)
♦∆,�Σ,Γ

ϕ0,Σ ϕ1,Σ . . . ϕn,Σ
····················································

where

I ∆ = {ϕ0 . . . ϕn} 6= ∅
I Γ is a set of literals
I Γ does not contain a pair n,¬n



Strategy for K

(id)
n,¬n,Γ

unsatisfiable
(∧)

ϕ ∧ ψ,Γ
ϕ,ψ,Γ

(∨)
ϕ ∨ ψ,Γ
ϕ,Γ ψ,Γ

(K)
♦∆,�Σ,Γ

ϕ0,Σ ϕ1,Σ . . . ϕn,Σ
····················································

Strategy:

I Start with the goal

I Call the decision procedure recursively on the lower sequents
I Terminate if no rule is applicable, or a contradiction is found
I Propagate the status upwards
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Formalization

structure kripke (states : Type) :=
(val : N → states → Prop)
(rel : states → states → Prop)

def sat {st} (k : kripke st) (s) (Γ : list nnf) :=
∀ ϕ ∈ Γ, force k s ϕ

I Rearranging val and rel during propagation is tedious.
I Defining a Kripke model from scratch whenever a rule is

applied is also unsatisfying.



Uniform and cumulative models

I Tree models

inductive model
| cons : list N → list model → model

I Interpretation functions

def mval : N → model → bool
| p (cons v r) := p ∈ v

def mrel : model → model → bool
| (cons v r) m := m ∈ r



Uniform and cumulative models

I Builder

def builder : kripke model :=
{ val := λ n s, mval n s,

rel := λ s1 s2, mrel s1 s2 }

Recall:

def sat {st} (k : kripke st) (s) (Γ : list nnf) :=
∀ ϕ ∈ Γ, force k s ϕ

Each state is a tree.



Handling the K-rule

(K)
♦∆,�Σ,Γ

ϕ0,Σ ϕ1,Σ . . . ϕn,Σ
····················································

def tmap
{p : list nnf → Prop} (f : Π Γ, p Γ → node Γ):
Π Γ : list (list nnf), (∀ i∈Γ, p i) →
psum {i // i ∈ Γ ∧ unsatisfiable i}

{x // batch_sat x Γ}



Formalization

Return type:

inductive node (Γ : list nnf) : Type
| closed : unsatisfiable Γ → node
| open_ : {s // sat builder s Γ} → node

Decision procedure:

def tableau : Π Γ : list nnf, node Γ := ...
using_well_founded
{rel_tac := λ _ _, ‘[exact 〈_, measure_wf node_size〉]}

Wrapper:

def is_sat (Γ : list nnf) : bool := ...



Formalization

theorem correctness (Γ : list nnf) :
is_sat Γ = tt ↔
∃ (st : Type) (k : kripke st) s, sat k s Γ



KT issues

Non-termination:
(T )

�ϕ,Γ
ϕ,�ϕ,Γ

Tableau with histories:

(id)
Σ | n,¬n,Γ
unsatisfiable

(∧)
Σ | ϕ ∧ ψ,Γ
Σ | ϕ,ψ,Γ

(∨)
Σ | ϕ ∨ ψ,Γ

Σ | ϕ,Γ Σ | ψ,Γ

(T )
Σ | �ϕ,Γ
�ϕ,Σ | ϕ,Γ

(K)
�Σ | ♦ϕ,Γ
∅ | ϕ,Σ



Date structure

structure seqt : Type :=
(main : list nnf)
(hdld : list nnf)
...



Termination

Definition (modal degree)
Let Γ be a set of formulas. The degree of Γ is the maximal number
of modal operators occurring in any formula ϕ ∈ Γ.

(id)
Σ | n,¬n,Γ
unsatisfiable

(∧)
Σ | ϕ ∧ ψ,Γ
Σ | ϕ,ψ,Γ

(∨)
Σ | ϕ ∨ ψ,Γ

Σ | ϕ,Γ Σ | ψ,Γ

(T )
Σ | �ϕ,Γ
�ϕ,Σ | ϕ,Γ

(K)
�Σ | ♦ϕ,Γ
∅ | ϕ,Σ

For a sequent Σ | Γ, the pair (degree(Σ ∪ Γ), l(Γ)) is decreasing
under lexicographic order.



Strategy for KT
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Strategy:

I Start with the goal

I Call the decision procedure recursively on the lower sequents
I Terminate if no rule is applicable, or a contradiction is found
I Propagate the status upwards, but
• Correctness is not obvious due to reflexivity
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Correctness

Definition (reflexive sequents)
A sequent Σ | Γ is called reflexive if for every �ϕ ∈ Σ, if a tree
model m := cons v l satisfies the following two conditions:
1. m � Γ, and
2. for every s ∈ l, for every �ψ ∈ Σ, s  ψ.

then m  ϕ.

Theorem (KT sequents)
Let Σ | Γ be a sequent generated by KT tableau. Then
1. Σ contains only �-formulas.
2. Σ | Γ is reflexive.



Data structure

structure seqt : Type :=
(main : list nnf)
(hdld : list nnf)
-- reflexive sequents
(pmain : srefl main hdld)
-- there are only boxed formulas in hdld
(phdld : box_only hdld)



S4 issues

(id)
n,¬n,Γ

unsatisfiable
(∧)

ϕ ∧ ψ,Γ
ϕ,ψ,Γ

(∨)
ϕ ∨ ψ,Γ
ϕ,Γ ψ,Γ

(T )
�ϕ,Γ
ϕ,�ϕ,Γ

(S4)
♦ϕ,�Σ,Γ

ϕ,�Σ

I The measure trick (degree(Σ∪ Γ), l(Γ)) for KT does not work

(S4)
�Σ | ♦ϕ,Γ
∅ | ϕ,�Σ



S4 tableau with histories

(id)
A || S || H || Σ | n,¬n,Γ

unsatisfiable

(∧)
A || S || H || Σ | ϕ ∧ ψ,Γ
A || ε || H || Σ | ϕ,ψ,Γ

(∨)
A || S || H || Σ | ϕ ∨ ψ,Γ

A || ε || H || Σ | ϕ,Γ A || ε || H || Σ | ψ,Γ

(�, new)
A || S || H || Σ | �ϕ,Γ
A || ε || ∅ || �ϕ,Σ | ϕ,Γ

(�ϕ /∈ Σ)

(�, dup)
A || S || H || Σ | �ϕ,Γ
A || ε || H || Σ | ϕ,Γ

(�ϕ ∈ Σ)

(S4)
A || S || H || Σ | ♦ϕ,Γ

(ϕ,Σ), A || (ϕ,Σ) || ϕ,H || Σ | ϕ,Σ
(ϕ /∈ H)



Formalization

structure sseqt : Type :=
(goal : list nnf)
(a : list psig)
(s : sig) -- sig := option psig
(h b m: list nnf)
(ndh : list.nodup h)
(ndb : list.nodup b)
(sph : h <+~ closure goal)
(spb : b <+~ closure goal)
(sbm : m ⊆ closure goal)
(ha : ∀ ϕ ∈ h, (〈ϕ, b〉 : psig) ∈ a)
(hb : box_only b)
(ps1 : Π (h : s 6= none), dsig s h ∈ m)
(ps2 : Π (h : s 6= none), bsig s h ⊆ m)



Termination

Theorem (S4 termination)
Let A || S || H || Σ | Γ be a sequent generated by S4 tableau and
A′ || S′ || H ′ || Σ′ | Γ′ its root. The triple

(l ◦ cl(Γ′)− l(Σ), l ◦ cl(Γ′)− l(H), l(Γ))

is decreasing under lexicographic order.



Strategy for S4

I Start with the goal

I Call the decision procedure recursively on the lower sequents
I Terminate if no rule is applicable, or a contradiction is found
I Ideally, propagate the status upwards, but
• the status of a sequent is not immediately decidable when no

rule is applicable to it
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S4 ill-founded reasoning
r

?

m

N

S4

N

S4

N

S4

N

S4

N

N

N

S4

N

N

Figure: The red edge indicates that a loop-check is triggered at node m
and a request is made. Black nodes are nodes with tree models
constructed, and white nodes do not have a tree structure yet and their
statuses are unknown to m. The node labeled r is the root.



S4 ill-founded reasoning

Difficulties:

I Need to know where the previous handling (S4-rule
application) happened

I Cannot construct a tree model due to referring to nodes above
I Difficult to decide the status due to reffering to nodes with

unexplored branches,
I in particular, the statuses of the referred nodes depend on the

one being decided



Strategy for S4

I When no rule is applicable to l = A || S || H || Σ | Γ and Γ
contains diamonds, a tree model m is constructed.

I The tree model comes with some additional data, defined
recursively in terms of upward propagation.

I The correctness of m is left open at the time it is constructed,
instead, a set P of properties of m is proved.
• P exploits the data contained in l and m, and is preserved by

upward propagation. It is an invariant.
I Propagate the tree model and the proofs of P upwards.
I Show that if the root sequent has a tree model mr with P

proved, then interpretation functions can be defined on a type
induced by mr to construct an S4 model m. It can be proved
from P that m � Γ.
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S4 tableau with histories

(id)
A || S || H || Σ | n,¬n,Γ

unsatisfiable

(∧)
A || S || H || Σ | ϕ ∧ ψ,Γ
A || ε || H || Σ | ϕ,ψ,Γ

(∨)
A || S || H || Σ | ϕ ∨ ψ,Γ

A || ε || H || Σ | ϕ,Γ A || ε || H || Σ | ψ,Γ

(�, new)
A || S || H || Σ | �ϕ,Γ
A || ε || ∅ || �ϕ,Σ | ϕ,Γ

(�ϕ /∈ Σ)

(�, dup)
A || S || H || Σ | �ϕ,Γ
A || ε || H || Σ | ϕ,Γ

(�ϕ ∈ Σ)

(S4)
A || S || H || Σ | ♦ϕ,Γ

(ϕ,Σ), A || (ϕ,Σ) || ϕ,H || Σ | ϕ,Σ
(ϕ /∈ H)



Backjumping

Recall the (∨) rule:

(∨)
ϕ ∨ ψ,Γ
ϕ,Γ ψ,Γ

I If the left child of the rule is unsatisfiable, there is a chance
that the right child is also unsatisfiable.

I Happens when the principal formula ϕ ∨ ψ is not responsible
for a contradiction.



Backjumping

A marking set M is recursively defined on closed branches.

Definition (responsibility)

1. For the id rule, M = {p,¬p}.
2. Let Ml be the marking set of the lower sequent of the ∧-rule.

M =

{
{ϕ ∧ ψ} ∪Ml if ϕ ∈Ml or ψ ∈Ml

Ml otherwise

3. Let Ml and Mr be the marking sets of the left and right lower
sequent of the ∨-rule respectively.

M =

{
{ϕ ∨ ψ} ∪Ml ∪Mr if ϕ ∈Ml or ψ ∈Mr

Ml ∪Mr otherwise



Backjumping

Definition (responsibility contd.)
Let l be the first unsatisfiable lower sequent of the K-rule, and Ml

its marking set.

M = ♦(l.head) ∪�(l.tail ∩Ml)



Backjumping

(∨)
ϕ ∨ ψ,Γ
ϕ,Γ ψ,Γ

Theorem (jumping)
If the left principal formula (i.e., ϕ) in the (∨) rule is not in the
marking set of the left child, then the parent is unsatisfiable.

Theorem (marking property)
For each sequent ϕ,Γ, if ϕ is not in its marking set, then Γ is
unsatisfiable.



Backjumping

Theorem (marking property revisited)
For each sequent Γ, if a subset ∆ ⊆ Γ contains nothing in the
marking set, then Γ−∆ is unsatisfiable.



Backjumping

def pmark (Γ m : list nnf) :=
∀ ∆, (∀ δ ∈ ∆, δ /∈ m) → ∆ <+ Γ →
unsatisfiable (list.diff Γ ∆)

Force each closed node to carry a marking set with a proof of
pmark.

inductive node (Γ : list nnf) : Type
| closed : Π m, unsatisfiable Γ → pmark Γ m → node
| open_ : {s // sat builder s Γ} → node
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