Verified Decision Procedures for Modal Logics

Minchao Wu Rajeev Goré

Research School of Computer Science Australian National University

August 20, 2019

Overview

What

- Verified decision procedures for modal logics K, KT and S4
- Verified backjumping for modal logic K
- How
 - Decision procedures as functions in Lean
 - With soundness, completeness and termination proved

Literature

 Tableaux based on sequent calculus given by Heuerding, Seyfried, and Zimmermann (HSZ)

Different proofs of correctness

Syntax

Definition (Syntax)

The syntax of formulas is given by the following grammar:

$$\begin{split} \mathbb{N} &::= 0 \mid S \mathbb{N} \\ \varphi &::= \mathbb{N} \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We work with a simpler language NNF given by the following grammar:

$$\begin{split} \mathbb{N} &::= 0 \mid S \mathbb{N} \\ \varphi &::= \mathbb{N} \mid \neg \mathbb{N} \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi \end{split}$$

Semantics

Definition (Kripke models)

A Kripke model is a triple (S,R,V) where S is a set of states, and $R\subseteq S\times S$ and $V\subseteq \mathbb{N}\times S$ are two binary relations. A KT model is a Kripke model whose R is reflexive. An S4 model is a KT model whose R is transitive.

Definition (forcing)

Let M = (S, R, V) be a Kripke model. The forcing relation \Vdash is defined as follows:

$(M,s) \Vdash n$	if $V(n,s)$
$(M,s) \Vdash \neg n$	$if\;(M,s)\not\Vdash n$
$(M,s)\Vdash \varphi \wedge \psi$	$if\ (M,s) \Vdash \varphi \ and \ (M,s) \Vdash \psi$
$(M,s)\Vdash \varphi \vee \psi$	$\text{if }(M,s)\Vdash\varphi \ \text{or} \ (M,s)\Vdash\psi$
$(M,s)\Vdash \Box \varphi$	if for all $t \in S, R(s,t)$ implies $(M,t) \Vdash \varphi$
$(M,s)\Vdash \Diamond \varphi$	if there exists $t \in S, R(s,t)$ and $(M,t) \Vdash \varphi$
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

Semantics

Definition (satisfiability)

Let M be a Kripke model. A state $s \in M$ satisfies a set Γ of formulas, written $(M, s) \vDash \Gamma$, if for all $\varphi \in \Gamma$, $(M, s) \vDash \varphi$. A set Γ of formulas is satisfiable if there is a Kripke state that satisfies it. Otherwise, we say that Γ is unsatisfiable.

Calculus

Tableau for modal logic K:

$$\begin{array}{ll} (id) \ \frac{n, \neg n, \Gamma}{\text{unsatisfiable}} & (\land) \ \frac{\varphi \land \psi, \Gamma}{\varphi, \psi, \Gamma} & (\lor) \ \frac{\varphi \lor \psi, \Gamma}{\varphi, \Gamma \ \psi, \Gamma} \\ & (K) \ \frac{\Diamond \varphi, \Box \Sigma, \Gamma}{\varphi, \Sigma} \end{array}$$

Tableau for modal logic KT and S4:

$$(T) \ \frac{\Box\varphi,\Gamma}{\varphi,\Box\varphi,\Gamma} \qquad (S4) \ \frac{\Diamond\varphi,\Box\Sigma,\Gamma}{\varphi,\Box\Sigma}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Alternative form

$$(K) \ \frac{\Diamond \varphi, \Box \Sigma, \Gamma}{\varphi, \Sigma}$$

should be understood as

$$(K) \begin{array}{c} \Diamond \Delta, \Box \Sigma, \Gamma \\ \hline \varphi_0, \Sigma \quad \varphi_1, \Sigma \quad \dots \quad \varphi_n, \Sigma \end{array}$$

where

$$\blacktriangleright \Delta = \{\varphi_0 \dots \varphi_n\} \neq \emptyset$$

- Γ is a set of literals
- Γ does not contain a pair $n, \neg n$

$$\begin{array}{ll} (id) \ \frac{n, \neg n, \Gamma}{\text{unsatisfiable}} & (\wedge) \ \frac{\varphi \wedge \psi, \Gamma}{\varphi, \psi, \Gamma} & (\vee) \ \frac{\varphi \vee \psi, \Gamma}{\varphi, \Gamma \ \psi, \Gamma} \\ (K) \ \frac{\Diamond \Delta, \Box \Sigma, \Gamma}{\varphi_0, \Sigma \ \varphi_1, \Sigma \ \dots \ \varphi_n, \Sigma} \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Strategy:

$$\begin{array}{ll} (id) \ \frac{n, \neg n, \Gamma}{\text{unsatisfiable}} & (\wedge) \ \frac{\varphi \wedge \psi, \Gamma}{\varphi, \psi, \Gamma} & (\vee) \ \frac{\varphi \vee \psi, \Gamma}{\varphi, \Gamma \quad \psi, \Gamma} \\ (K) \ \frac{\Diamond \Delta, \Box \Sigma, \Gamma}{\varphi_0, \Sigma \quad \varphi_1, \Sigma \quad \dots \quad \varphi_n, \Sigma} \end{array}$$

Strategy:

- Start with the goal
- Call the decision procedure recursively on the lower sequents

$$\begin{array}{ll} (id) \ \frac{n, \neg n, \Gamma}{\text{unsatisfiable}} & (\wedge) \ \frac{\varphi \wedge \psi, \Gamma}{\varphi, \psi, \Gamma} & (\vee) \ \frac{\varphi \vee \psi, \Gamma}{\varphi, \Gamma \quad \psi, \Gamma} \\ (K) \ \frac{\Diamond \Delta, \Box \Sigma, \Gamma}{\varphi_0, \Sigma \quad \varphi_1, \Sigma \quad \dots \quad \varphi_n, \Sigma} \end{array}$$

Strategy:

- Start with the goal
- Call the decision procedure recursively on the lower sequents
- Terminate if no rule is applicable, or a contradiction is found

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$$\begin{array}{ll} (id) \ \frac{n, \neg n, \Gamma}{\text{unsatisfiable}} & (\wedge) \ \frac{\varphi \wedge \psi, \Gamma}{\varphi, \psi, \Gamma} & (\vee) \ \frac{\varphi \vee \psi, \Gamma}{\varphi, \Gamma \quad \psi, \Gamma} \\ (K) \ \frac{\Diamond \Delta, \Box \Sigma, \Gamma}{\varphi_0, \Sigma \quad \varphi_1, \Sigma \quad \dots \quad \varphi_n, \Sigma} \end{array}$$

Strategy:

- Start with the goal
- Call the decision procedure recursively on the lower sequents
- Terminate if no rule is applicable, or a contradiction is found

Propagate the status upwards

Formalization

```
structure kripke (states : Type) :=
(val : \mathbb{N} \rightarrow states \rightarrow Prop)
(rel : states \rightarrow states \rightarrow Prop)
```

def sat {st} (k : kripke st) (s) (Γ : list nnf) := $\forall \varphi \in \Gamma$, force k s φ

Rearranging val and rel during propagation is tedious.
 Defining a Kripke model from scratch whenever a rule is applied is also unsatisfying.

Uniform and cumulative models

Tree models

inductive model

 $| \texttt{ cons } : \texttt{ list } \mathbb{N} \to \texttt{ list model } \to \texttt{ model }$

Interpretation functions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Uniform and cumulative models

```
Builder
```

```
def builder : kripke model :=
{ val := \lambda n s, mval n s,
rel := \lambda s<sub>1</sub> s<sub>2</sub>, mrel s<sub>1</sub> s<sub>2</sub> }
```

Recall:

def sat {st} (k : kripke st) (s) (Γ : list nnf) := $\forall \ \varphi \in \Gamma$, force k s φ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Each state is a tree.

Handling the K-rule

$$(K) \xrightarrow{\Diamond \Delta, \Box \Sigma, \Gamma}_{\varphi_0, \Sigma \quad \varphi_1, \Sigma \quad \dots \quad \varphi_n, \Sigma}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

$$\begin{array}{l} \texttt{def tmap} \\ \{\texttt{p} : \texttt{list nnf} \rightarrow \texttt{Prop} \} (\texttt{f} : \Pi \ \Gamma, \ \texttt{p} \ \Gamma \rightarrow \texttt{node } \Gamma) : \\ \Pi \ \Gamma : \texttt{list (list nnf), } (\forall \ \texttt{i} \in \Gamma, \ \texttt{p} \ \texttt{i}) \rightarrow \\ \texttt{psum } \{\texttt{i} \ // \ \texttt{i} \in \Gamma \ \land \ \texttt{unsatisfiable } \texttt{i} \} \\ \quad \{\texttt{x} \ // \ \texttt{batch_sat } \texttt{x} \ \Gamma\} \end{array}$$

Formalization

Return type:

Decision procedure:

```
def tableau : \Pi \Gamma : list nnf, node \Gamma := ...
using_well_founded
{rel_tac := \lambda _ _, '[exact \langle_, measure_wf node_size\rangle]}
```

Wrapper:

def is_sat (Γ : list nnf) : bool := ...

Formalization

```
theorem correctness (\Gamma : list nnf) :
is_sat \Gamma = tt \leftrightarrow
\exists (st : Type) (k : kripke st) s, sat k s \Gamma
```

KT issues

Non-termination:

$$(T) \ \frac{\Box \varphi, \Gamma}{\varphi, \Box \varphi, \Gamma}$$

Tableau with histories:

$$\begin{array}{ll} (id) \ \frac{\Sigma \mid n, \neg n, \Gamma}{\text{unsatisfiable}} & (\land) \ \frac{\Sigma \mid \varphi \land \psi, \Gamma}{\Sigma \mid \varphi, \psi, \Gamma} & (\lor) \ \frac{\Sigma \mid \varphi \lor \psi, \Gamma}{\Sigma \mid \varphi, \Gamma \quad \Sigma \mid \psi, \Gamma} \\ \\ (T) \ \frac{\Sigma \mid \Box \varphi, \Gamma}{\Box \varphi, \Sigma \mid \varphi, \Gamma} & (K) \ \frac{\Box \Sigma \mid \Diamond \varphi, \Gamma}{\varnothing \mid \varphi, \Sigma} \end{array}$$

Date structure

structure seqt : Type :=
(main : list nnf)
(hdld : list nnf)

•••

Termination

Definition (modal degree)

Let Γ be a set of formulas. The degree of Γ is the maximal number of modal operators occurring in any formula $\varphi \in \Gamma$.

$$\begin{array}{ll} (id) \ \frac{\Sigma \mid n, \neg n, \Gamma}{\text{unsatisfiable}} & (\land) \ \frac{\Sigma \mid \varphi \land \psi, \Gamma}{\Sigma \mid \varphi, \psi, \Gamma} & (\lor) \ \frac{\Sigma \mid \varphi \lor \psi, \Gamma}{\Sigma \mid \varphi, \Gamma \quad \Sigma \mid \psi, \Gamma} \\ (T) \ \frac{\Sigma \mid \Box \varphi, \Gamma}{\Box \varphi, \Sigma \mid \varphi, \Gamma} & (K) \ \frac{\Box \Sigma \mid \Diamond \varphi, \Gamma}{\varnothing \mid \varphi, \Sigma} \end{array}$$

For a sequent $\Sigma \mid \Gamma$, the pair $(degree(\Sigma \cup \Gamma), l(\Gamma))$ is decreasing under lexicographic order.

$$\begin{array}{ll} (id) \ \frac{\Sigma \mid n, \neg n, \Gamma}{\text{unsatisfiable}} & (\wedge) \ \frac{\Sigma \mid \varphi \wedge \psi, \Gamma}{\Sigma \mid \varphi, \psi, \Gamma} & (\vee) \ \frac{\Sigma \mid \varphi \vee \psi, \Gamma}{\Sigma \mid \varphi, \Gamma \quad \Sigma \mid \psi, \Gamma} \\ \\ (T) \ \frac{\Sigma \mid \Box \varphi, \Gamma}{\Box \varphi, \Sigma \mid \varphi, \Gamma} & (K) \ \frac{\Box \Sigma \mid \Diamond \varphi, \Gamma}{\varnothing \mid \varphi, \Sigma} \end{array}$$

Strategy:

Start with the goal

$$\begin{array}{ll} (id) \ \frac{\Sigma \mid n, \neg n, \Gamma}{\text{unsatisfiable}} & (\wedge) \ \frac{\Sigma \mid \varphi \wedge \psi, \Gamma}{\Sigma \mid \varphi, \psi, \Gamma} & (\vee) \ \frac{\Sigma \mid \varphi \vee \psi, \Gamma}{\Sigma \mid \varphi, \Gamma \quad \Sigma \mid \psi, \Gamma} \\ \\ (T) \ \frac{\Sigma \mid \Box \varphi, \Gamma}{\Box \varphi, \Sigma \mid \varphi, \Gamma} & (K) \ \frac{\Box \Sigma \mid \Diamond \varphi, \Gamma}{\varnothing \mid \varphi, \Sigma} \end{array}$$

Strategy:

- Start with the goal
- Call the decision procedure recursively on the lower sequents

$$\begin{array}{ll} (id) \ \frac{\Sigma \mid n, \neg n, \Gamma}{\text{unsatisfiable}} & (\wedge) \ \frac{\Sigma \mid \varphi \wedge \psi, \Gamma}{\Sigma \mid \varphi, \psi, \Gamma} & (\vee) \ \frac{\Sigma \mid \varphi \vee \psi, \Gamma}{\Sigma \mid \varphi, \Gamma \quad \Sigma \mid \psi, \Gamma} \\ \\ (T) \ \frac{\Sigma \mid \Box \varphi, \Gamma}{\Box \varphi, \Sigma \mid \varphi, \Gamma} & (K) \ \frac{\Box \Sigma \mid \Diamond \varphi, \Gamma}{\varnothing \mid \varphi, \Sigma} \end{array}$$

Strategy:

- Start with the goal
- Call the decision procedure recursively on the lower sequents
- Terminate if no rule is applicable, or a contradiction is found

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\begin{array}{ll} (id) \ \frac{\Sigma \mid n, \neg n, \Gamma}{\text{unsatisfiable}} & (\wedge) \ \frac{\Sigma \mid \varphi \wedge \psi, \Gamma}{\Sigma \mid \varphi, \psi, \Gamma} & (\vee) \ \frac{\Sigma \mid \varphi \vee \psi, \Gamma}{\Sigma \mid \varphi, \Gamma \quad \Sigma \mid \psi, \Gamma} \\ \\ (T) \ \frac{\Sigma \mid \Box \varphi, \Gamma}{\Box \varphi, \Sigma \mid \varphi, \Gamma} & (K) \ \frac{\Box \Sigma \mid \Diamond \varphi, \Gamma}{\varnothing \mid \varphi, \Sigma} \end{array}$$

Strategy:

- Start with the goal
- Call the decision procedure recursively on the lower sequents
- Terminate if no rule is applicable, or a contradiction is found
- Propagate the status upwards, but

$$\begin{array}{ll} (id) \ \frac{\Sigma \mid n, \neg n, \Gamma}{\text{unsatisfiable}} & (\wedge) \ \frac{\Sigma \mid \varphi \wedge \psi, \Gamma}{\Sigma \mid \varphi, \psi, \Gamma} & (\vee) \ \frac{\Sigma \mid \varphi \vee \psi, \Gamma}{\Sigma \mid \varphi, \Gamma \quad \Sigma \mid \psi, \Gamma} \\ \\ (T) \ \frac{\Sigma \mid \Box \varphi, \Gamma}{\Box \varphi, \Sigma \mid \varphi, \Gamma} & (K) \ \frac{\Box \Sigma \mid \Diamond \varphi, \Gamma}{\varnothing \mid \varphi, \Sigma} \end{array}$$

Strategy:

- Start with the goal
- Call the decision procedure recursively on the lower sequents
- Terminate if no rule is applicable, or a contradiction is found

- Propagate the status upwards, but
- Correctness is not obvious due to reflexivity

Correctness

Definition (reflexive sequents)

A sequent $\Sigma \mid \Gamma$ is called reflexive if for every $\Box \varphi \in \Sigma$, if a tree model $m := cons \ v \ l$ satisfies the following two conditions:

1. $m \models \Gamma$, and

2. for every
$$s \in l$$
, for every $\Box \psi \in \Sigma$, $s \Vdash \psi$.

then $m \Vdash \varphi$.

Theorem (KT sequents)

Let $\Sigma \mid \Gamma$ be a sequent generated by KT tableau. Then

- 1. Σ contains only \Box -formulas.
- 2. $\Sigma \mid \Gamma$ is reflexive.

```
structure seqt : Type :=
(main : list nnf)
(hdld : list nnf)
-- reflexive sequents
(pmain : srefl main hdld)
-- there are only boxed formulas in hdld
(phdld : box_only hdld)
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

S4 issues

$$\begin{array}{ll} (id) \ \frac{n, \neg n, \Gamma}{\text{unsatisfiable}} & (\wedge) \ \frac{\varphi \wedge \psi, \Gamma}{\varphi, \psi, \Gamma} & (\vee) \ \frac{\varphi \vee \psi, \Gamma}{\varphi, \Gamma \quad \psi, \Gamma} \\ (T) \ \frac{\Box \varphi, \Gamma}{\varphi, \Box \varphi, \Gamma} & (S4) \ \frac{\Diamond \varphi, \Box \Sigma, \Gamma}{\varphi, \Box \Sigma} \end{array}$$

 \blacktriangleright The measure trick $(degree(\Sigma\cup\Gamma), l(\Gamma))$ for KT does not work

$$(S4) \ \frac{\Box \Sigma \mid \Diamond \varphi, \Gamma}{\varnothing \mid \varphi, \Box \Sigma}$$

S4 tableau with histories

 $(id) \ \frac{A \parallel S \parallel H \parallel \Sigma \mid n, \neg n, \Gamma}{\text{unsatisfiable}}$ $(\wedge) \frac{A \parallel S \parallel H \parallel \Sigma \parallel \varphi \land \psi, \Gamma}{A \parallel \varepsilon \parallel H \parallel \Sigma \mid \varphi, \psi, \Gamma}$ $(\vee) \frac{A \parallel S \parallel H \parallel \Sigma \mid \varphi \lor \psi, \Gamma}{A \parallel \varepsilon \parallel H \parallel \Sigma \mid \varphi, \Gamma - A \parallel \varepsilon \parallel H \parallel \Sigma \mid \psi, \Gamma}$ $(\Box, \mathsf{new}) \ \frac{A \parallel S \parallel H \parallel \Sigma \mid \Box \varphi, \Gamma}{A \parallel \varepsilon \parallel \varphi \parallel \Box \varphi, \Sigma \mid \varphi, \Gamma} \ (\Box \varphi \notin \Sigma)$ $(\Box, \mathsf{dup}) \ \frac{A \parallel S \parallel H \parallel \Sigma \mid \Box\varphi, \Gamma}{A \parallel \varepsilon \parallel H \parallel \Sigma \mid \varphi, \Gamma} \ (\Box\varphi \in \Sigma)$ $(S4) \frac{A \parallel S \parallel H \parallel \Sigma \mid \Diamond \varphi, \Gamma}{(\varphi, \Sigma) \mid A \parallel (\varphi, \Sigma) \parallel \varphi, H \parallel \Sigma \mid \varphi, \Sigma} (\varphi \notin H)$

Formalization

```
structure sseqt : Type :=
(goal : list nnf)
(a : list psig)
(s : sig) -- sig := option psig
(h b m: list nnf)
(ndh : list.nodup h)
(ndb : list.nodup b)
(sph : h <+~ closure goal)
(spb : b <+~ closure goal)
(sbm : m \subseteq closure goal)
(ha : \forall \varphi \in h, (\langle \varphi, b \rangle : psig) \in a)
(hb : box_only b)
(ps_1 : \Pi (h : s \neq none), dsig s h \in m)
(ps_2 : \Pi (h : s \neq none), bsig s h \subseteq m)
```

Termination

Theorem (S4 termination)

Let $A \parallel S \parallel H \parallel \Sigma \mid \Gamma$ be a sequent generated by S4 tableau and $A' \parallel S' \parallel H' \parallel \Sigma' \mid \Gamma'$ its root. The triple

$$(l\circ cl(\Gamma')-l(\Sigma),l\circ cl(\Gamma')-l(H),l(\Gamma))$$

is decreasing under lexicographic order.

Start with the goal

$$(S4) \ \frac{A \parallel S \parallel H \parallel \Sigma \mid \Diamond \varphi, \Gamma}{(\varphi, \Sigma), A \parallel (\varphi, \Sigma) \parallel \varphi, H \parallel \Sigma \mid \varphi, \Sigma} \ (\varphi \notin H)$$

Start with the goal

Call the decision procedure recursively on the lower sequents

$$(S4) \ \frac{A \parallel S \parallel H \parallel \Sigma \mid \Diamond \varphi, \Gamma}{(\varphi, \Sigma), A \parallel (\varphi, \Sigma) \parallel \varphi, H \parallel \Sigma \mid \varphi, \Sigma} \ (\varphi \notin H)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Start with the goal

- Call the decision procedure recursively on the lower sequents
- Terminate if no rule is applicable, or a contradiction is found

$$(S4) \ \frac{A \parallel S \parallel H \parallel \Sigma \mid \Diamond \varphi, \Gamma}{(\varphi, \Sigma), A \parallel (\varphi, \Sigma) \parallel \varphi, H \parallel \Sigma \mid \varphi, \Sigma} \ (\varphi \notin H)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Start with the goal
- Call the decision procedure recursively on the lower sequents
- Terminate if no rule is applicable, or a contradiction is found
- Ideally, propagate the status upwards, but

$$(S4) \ \frac{A \parallel S \parallel H \parallel \Sigma \mid \Diamond \varphi, \Gamma}{(\varphi, \Sigma), A \parallel (\varphi, \Sigma) \parallel \varphi, H \parallel \Sigma \mid \varphi, \Sigma} \ (\varphi \notin H)$$

Start with the goal

- Call the decision procedure recursively on the lower sequents
- Terminate if no rule is applicable, or a contradiction is found
- Ideally, propagate the status upwards, but
- the status of a sequent is not immediately decidable when no rule is applicable to it

$$(S4) \ \frac{A \parallel S \parallel H \parallel \Sigma \mid \Diamond \varphi, \Gamma}{(\varphi, \Sigma), A \parallel (\varphi, \Sigma) \parallel \varphi, H \parallel \Sigma \mid \varphi, \Sigma} \ (\varphi \notin H)$$

S4 ill-founded reasoning

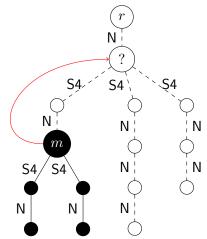


Figure: The red edge indicates that a loop-check is triggered at node m and a request is made. Black nodes are nodes with tree models constructed, and white nodes do not have a tree structure yet and their statuses are unknown to m. The node labeled r is the root.

Difficulties:

- Need to know where the previous handling (S4-rule application) happened
- Cannot construct a tree model due to referring to nodes above
- Difficult to decide the status due to reffering to nodes with unexplored branches,
- in particular, the statuses of the referred nodes depend on the one being decided

• When no rule is applicable to $l = A || S || H || \Sigma | \Gamma$ and Γ contains diamonds, a tree model m is constructed.

When no rule is applicable to l = A || S || H || Σ | Γ and Γ contains diamonds, a tree model m is constructed.

The tree model comes with some additional data, defined recursively in terms of upward propagation.

- When no rule is applicable to l = A || S || H || Σ | Γ and Γ contains diamonds, a tree model m is constructed.
- The tree model comes with some additional data, defined recursively in terms of upward propagation.
- The correctness of m is left open at the time it is constructed, instead, a set P of properties of m is proved.

- When no rule is applicable to $l = A || S || H || \Sigma | \Gamma$ and Γ contains diamonds, a tree model m is constructed.
- The tree model comes with some additional data, defined recursively in terms of upward propagation.
- The correctness of m is left open at the time it is constructed, instead, a set P of properties of m is proved.
- *P* exploits the data contained in *l* and *m*, and is preserved by upward propagation. It is an invariant.

- When no rule is applicable to $l = A || S || H || \Sigma | \Gamma$ and Γ contains diamonds, a tree model m is constructed.
- The tree model comes with some additional data, defined recursively in terms of upward propagation.
- The correctness of m is left open at the time it is constructed, instead, a set P of properties of m is proved.
- P exploits the data contained in l and m, and is preserved by upward propagation. It is an invariant.

Propagate the tree model and the proofs of P upwards.

- When no rule is applicable to l = A || S || H || Σ | Γ and Γ contains diamonds, a tree model m is constructed.
- The tree model comes with some additional data, defined recursively in terms of upward propagation.
- The correctness of m is left open at the time it is constructed, instead, a set P of properties of m is proved.
- P exploits the data contained in l and m, and is preserved by upward propagation. It is an invariant.
- Propagate the tree model and the proofs of P upwards.
- Show that if the root sequent has a tree model m_r with P proved, then interpretation functions can be defined on a type induced by m_r to construct an S4 model m. It can be proved from P that m ⊨ Γ.

S4 tableau with histories

 $(id) \ \frac{A \parallel S \parallel H \parallel \Sigma \mid n, \neg n, \Gamma}{\text{unsatisfiable}}$ $(\wedge) \frac{A \parallel S \parallel H \parallel \Sigma \parallel \varphi \land \psi, \Gamma}{A \parallel \varepsilon \parallel H \parallel \Sigma \mid \varphi, \psi, \Gamma}$ $(\vee) \frac{A \parallel S \parallel H \parallel \Sigma \mid \varphi \lor \psi, \Gamma}{A \parallel \varepsilon \parallel H \parallel \Sigma \mid \varphi, \Gamma - A \parallel \varepsilon \parallel H \parallel \Sigma \mid \psi, \Gamma}$ $(\Box, \mathsf{new}) \ \frac{A \parallel S \parallel H \parallel \Sigma \mid \Box \varphi, \Gamma}{A \parallel \varepsilon \parallel \varphi \parallel \Box \varphi, \Sigma \mid \varphi, \Gamma} \ (\Box \varphi \notin \Sigma)$ $(\Box, \mathsf{dup}) \ \frac{A \parallel S \parallel H \parallel \Sigma \mid \Box\varphi, \Gamma}{A \parallel \varepsilon \parallel H \parallel \Sigma \mid \varphi, \Gamma} \ (\Box\varphi \in \Sigma)$ $(S4) \frac{A \parallel S \parallel H \parallel \Sigma \mid \Diamond \varphi, \Gamma}{(\varphi, \Sigma) \mid A \parallel (\varphi, \Sigma) \parallel \varphi, H \parallel \Sigma \mid \varphi, \Sigma} (\varphi \notin H)$

Recall the (\lor) rule:

$$(\vee) \ \frac{\varphi \lor \psi, \Gamma}{\varphi, \Gamma \quad \psi, \Gamma}$$

- If the left child of the rule is unsatisfiable, there is a chance that the right child is also unsatisfiable.
- ▶ Happens when the principal formula $\varphi \lor \psi$ is *not responsible* for a contradiction.

A marking set M is recursively defined on closed branches. Definition (responsibility)

1. For the id rule, $M = \{p, \neg p\}$.

2. Let M_l be the marking set of the lower sequent of the \wedge -rule.

$$M = \begin{cases} \{\varphi \land \psi\} \cup M_l & \text{if } \varphi \in M_l \text{ or } \psi \in M_l \\ M_l & \text{otherwise} \end{cases}$$

3. Let M_l and M_r be the marking sets of the left and right lower sequent of the \lor -rule respectively.

$$M = \begin{cases} \{\varphi \lor \psi\} \cup M_l \cup M_r & \text{if } \varphi \in M_l \text{ or } \psi \in M_r \\ M_l \cup M_r & \text{otherwise} \end{cases}$$

Definition (responsibility contd.)

Let l be the first unsatisfiable lower sequent of the K-rule, and M_l its marking set.

$$M = \Diamond (l.head) \cup \Box (l.tail \cap M_l)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$$(\vee) \ \frac{\varphi \lor \psi, \Gamma}{\varphi, \Gamma \quad \psi, \Gamma}$$

Theorem (jumping)

If the left principal formula (i.e., φ) in the (\vee) rule is not in the marking set of the left child, then the parent is unsatisfiable.

Theorem (marking property)

For each sequent φ, Γ , if φ is not in its marking set, then Γ is unsatisfiable.

Theorem (marking property revisited)

For each sequent Γ , if a subset $\Delta \subseteq \Gamma$ contains nothing in the marking set, then $\Gamma - \Delta$ is unsatisfiable.

def pmark (Γ m : list nnf) := $\forall \Delta$, ($\forall \delta \in \Delta$, $\delta \notin$ m) $\rightarrow \Delta \prec \Gamma \rightarrow$ unsatisfiable (list.diff $\Gamma \Delta$)

Force each closed node to carry a marking set with a proof of pmark.

inductive node (Γ : list nnf) : Type | closed : Π m, unsatisfiable $\Gamma \rightarrow$ pmark Γ m \rightarrow node | open_ : {s // sat builder s Γ } \rightarrow node

Summary

What

- Verified decision procedures for modal logics K, KT and S4
- Verified backjumping for modal logic K
- How
 - Decision procedures as functions in Lean
 - With soundness, completeness and termination proved
- Literature
 - Tableaux based on sequent calculus given by Heuerding, Seyfried, and Zimmermann (HSZ)

Different proofs of correctness