
A Verified Tableau Prover for Modal Logic K

Minchao Wu

April 1, 2019

Correctness by Construction

The more expressive the type system, the more specifications help
programmers understand their goals and the programs that achieve
them.

Modal Logic K

Definition (Syntax)
The syntax of formulas is given by the following grammar:

N ::= 0 | SN
ϕ ::= N | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | �ϕ | ♦ϕ

We work with a simpler language NNF given by the following
grammar:

N ::= 0 | SN
ϕ ::= N | ¬N | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ

Semantics
Definition (Kripke Models)
A Kripke model is a triple (S,R, V) where S is a set of states, and
R ⊆ S × S and V ⊆ N× S are two binary relations.

Definition (forcing)
Let M = (S,R, V) be a Kripke model. The forcing relation
between a pair (M, s) where s ∈ S and a NNF ϕ is defined as
follows:

(M, s) n if V (n, s)

(M, s) ¬n if ¬V (n, s)

(M, s) ϕ ∧ ψ if (M, s) ϕ and (M, s) ψ

(M, s) ϕ ∨ ψ if (M, s) ϕ or (M, s) ψ

(M, s) �ϕ if for all t ∈ S,R(s, t) implies (M, t) ϕ

(M, s) ♦ϕ if there exists t ∈ S,R(s, t) and (M, t) ϕ

Semantics

Definition (satisfiability)
Let M be a Kripke model. A state s of M satisfies a set Γ of NNF
if for all ϕ ∈ Γ, (M, s) ϕ. A set Γ of NNF is satisfiable if there is
a Kripke model and a state that satisfy it. Otherwise, we say that
Γ is unsatisfiable.

Definition (literals)
A NNF formula ϕ is a literal if ϕ = n or ϕ = ¬n for some n ∈ N.

Tableau

Propositional rules:

(id)
n;¬n; Γ

unsatisfiable
(∧)

ϕ ∧ ψ; Γ

ϕ;ψ; Γ
(∨)

ϕ ∨ ψ; Γ

ϕ; Γ | ψ; Γ

Modal rule:
(♦)

♦D;�B; Γ

ϕ0;B‖ . . . ‖ϕn;B

where D = {ϕ0 . . . ϕn} 6= ∅ and Γ contains only literals if not
empty.
For each rule, we call the set of formulas above the horizontal line a
parent node, and sets of formulas below the horizontal line
separated by | or ‖ children nodes.

Theorem (construction of models)
Let Γ be a set of NNF formulas. If none of the above rules are
applicable to Γ, then there exist M and s such that s satisfies Γ.

Tableau

Theorem (propogation of status (∧, ♦))
All the children of a ♦(∧) rule are satisfiable if and only if the
parent is satisfiable.

Theorem (propagation of status (∨))
One of the children of a ∨ rule is satisfiable if and only if the parent
is satisfiable.

Definition (tableau)
Let Γ be a set of NNF. T is a tableau of Γ if T is a tree such that
(1) the root node is Γ, and
(2) all children nodes are obtained from their parent node by
applying one of the tableau rules.

Theorem (termination)
Let Γ be a set of NNF. Each tableau of Γ is finite.

Tableau

Theorem (decidability)
Let Γ be a set of NNF. Whether Γ is satisfiable or not is decidable.

Proof.
Let T be a tableau of Γ. By termination, T is finite. By the id rule
and the theorem of construction of models, each leaf of T is either
satisfiable or not. Then by propogation theorems we have the
decision procedure.

Formalization

A tableau is a procedure of propagating information from children
to parents. Decidability theorem tells us that the status of each
node in a tableau is always decidable. Therefore, a tableau can be
viewed as a function that takes a set Γ of NNF and returns the
status of Γ.

def tableau : Π Γ : list nnf, node Γ := sorry

inductive node (Γ : list nnf) : Type
| closed : unsatisfiable Γ → node
| open_ : {s // sat builder s Γ} → node

Formalization

structure kripke (states : Type) :=
(val : N → states → Prop)
(rel : states → states → Prop)

def force {states : Type} (k : kripke states) :
states → nnf → Prop

| s (var n) := k.val n s
| s (neg n) := ¬ k.val n s
| s (and ϕ ψ) := force s ϕ ∧ force s ψ
| s (or ϕ ψ) := force s ϕ ∨ force s ψ
| s (box ϕ) := ∀ s’, k.rel s s’ → force s’ ϕ
| s (dia ϕ) := ∃ s’, k.rel s s’ ∧ force s’ ϕ

Formalization

def sat {st} (k : kripke st) (s) (Γ : list nnf) :=
∀ ϕ ∈ Γ, force k s ϕ

def unsatisfiable (Γ : list nnf) : Prop :=
∀ (st) (k : kripke st) s, ¬ sat k s Γ

Carrier

What is a suitable states : Type ?

We have a lot of choices: N, Z, R, C, topological spaces,
homemade inductive types. . .

A good states : Type should be helpful to formalize theorems.

Problems with Carriers Like N
Recall the crucial theorem:

Theorem (propogation of status (♦))
All the children of a ♦ rule are satisfiable if and only if the parent is
satisfiable.

Proof (first attempt).
(⇒): Suppose we have a sequence of pairs 〈(M0, s0), . . . , (Mn, sn)〉
such that (Mi, si) satisfies ϕi, B. We construct a new model Mp

and a new state sp by defining Rp and Vp as follows . . .
(⇐): . . .

It is awkward to define Mp because models of children nodes know
nothing about each other. Their R and V might be conflicting
because their S can contain same states. Moreover, since Ri and
Vi are relations, it is inconvenient to extract information from them
to build a new model.

Homemade Carriers

inductive model
| leaf : list N → model
| cons : list N → list model → model

Intuition behind:

The constructor leaf takes a list of N representing the variables
true in the state.
The constructor cons takes a list of N representing the variables
true in the state, and a list of models representing the reachable
states.
There can be structurally similar models but there won’t be
conflicting models.
The R and V are inferrable from within a state.

Interpretation Functions and Builders

def mval : N → model → bool
| p (leaf v) := if p ∈ v then tt else ff
| p (cons v r) := if p ∈ v then tt else ff

def mrel : model → model → bool
| (leaf v) m := ff
| (cons v r) m := if m ∈ r then tt else ff

def builder : kripke model :=
{val := λ n s, mval n s, rel := λ s1 s2, mrel s1 s2}

We now have a uniform way of building a Kripke model.

Tree Models

Theorem (propogation of status (♦))
All the children of a ♦ rule are satisfiable if and only if the parent is
satisfiable.

Proof (second attempt).
(⇒): Suppose we have a list of pairs 〈(M0, s0), . . . , (Mn, sn)〉 such
that (Mi, si) satisfies ϕi, B. We construct a new state simply by
applying cons to the sequence of states 〈s0, . . . , sn〉. The
corresponding model Mp is given by the builder. It can be shown
that the new state satisfies the parent.
(⇐): . . .

Computing with the Modal Rule

How do we describe the children of the modal rule?

def unmodal (Γ : list nnf) : list (list nnf) :=
list.map (λ d, d :: (unbox Γ)) (undia Γ)

We want to call tableau recursively on all the elements of
unmodal Γ.

Is list.map good for the task?

Problems with list.map

list.map computes everything in one shot. But we need early
termination if one unsatisfiable child is found.

The compiler has no idea why list.map tableau (unmodal Γ)
terminates.

We need a customized version of list.map.

Termination

Assume that we have the following proof:

def unmodal_size (Γ : list nnf) : ∀ (i : list nnf),
i ∈ unmodal Γ → (node_size i < node_size Γ) := sorry

The compiler does not know it’s terminating, because in the term
list.map tableau (unmodal Γ), tableau is passed as an
argument and not applied to anything.

Solution:

list.map (λ x, tableau x) (unmodal Γ)

Termination

Still not good enough because x is arbitrary.

Let’s add more stuff to it.

list.map (λ x h, tableau x) (unmodal Γ)

h is an evidence (i.e., proof) saying that the size of x is smaller
than the size of Γ, which is the original set of NNF that tableau is
being called on.

What is the type of h?

h : p x where p : α → Prop is a predicate if we abstract the
concrete meaning here.

Termination

Now list.map is not type-correct, but we can fix this by defining a
customized version.

def tmap {p : list nnf → Prop}
(f : Π Γ, p Γ → node Γ): Π Γ : list (list nnf),
?

tmap should also be designed in a way that it terminates as soon as
an unsatisfiable child is found.

If an unsatisfiable child is found, it returns the child with a proof of
it being unsatisfiable. Otherwise it returns a list of models with a
proof saying that the ith element of the list satisfies the ith child.

Termination

def tmap {p : list nnf → Prop}
(f : Π Γ, p Γ → node Γ): Π Γ : list (list nnf),
psum {i // i ∈ Γ ∧ unsatisfiable i}

{x : list model // batch_sat x Γ}

Is this function definable (provable) ? Not yet.

To define it we need to do recursion on Γ and call the function f
on the head of Γ. When we do this, P (head) becomes a proof
obligation, but we can infer from nowhere that it holds.

Termination

So we need one more assumption.

def tmap {p : list nnf → Prop}
(f : Π Γ, p Γ → node Γ): Π Γ : list (list nnf),
(∀ i∈Γ, p i) → -- necessary and provable
psum {i // i ∈ Γ ∧ unsatisfiable i}

{x : list model // batch_sat x Γ}

Termination

...
| [] h := psum.inr 〈[], bs_nil〉
| (hd :: tl) h :=
match f hd (h hd (by simp)) with
| (node.closed _ pr _) := psum.inl 〈hd, by simp, pr〉
| (node.open_ w1) :=

match tmap tl (λ x hx, h x (by simp [hx])) with
| (psum.inl uw) :=

begin
left, rcases uw with 〈w, hin, h〉,
split, split, swap, exact h, simp [hin]

end
| (psum.inr w2) := psum.inr 〈(w1.1::w2),

bs_cons _ _ _ _ w1.2 w2.2〉
end

end

Termination

def tmap {p : list nnf → Prop}
(f : Π Γ, p Γ → node Γ): Π Γ : list (list nnf),
(∀ i∈Γ, p i) → -- necessary and provable
psum {i // i ∈ Γ ∧ unsatisfiable i}

{x : list model // batch_sat x Γ}

tmap is essentially the modal rule formalized in a computational
(runnable) way.

Backjumping

Recall the (∨) rule:

(∨)
ϕ ∨ ψ; Γ

ϕ; Γ | ψ; Γ

We call the formula ϕ ∨ ψ in the parent a principal formula, and ϕ
the left principal formula, ψ the right principal formula respectively.

The idea of backjumping is that if the left child of the rule is
unsatisfiable, there is a chance that the right child is also
unsatisfiable.

This happens when the principal formula is not responsible for a
contradiction.

Backjumping
Define responsibility for each of the rules. Each node induces a set
of formulas, called a marking set, representing the formulas
responsible for contradictions.

Definition (responsibility)

(id)
n;¬n; Γ

unsatisfiable
Marking set: M = {n,¬n}.

(∧)
ϕ ∧ ψ; Γ

ϕ;ψ; Γ

Let M be the marking set of the child.

Mparent =

{
M ∪ {ϕ ∧ ψ} if ϕ ∈M or ψ ∈M
M otherwise

Backjumping
Definition (responsibility contd.)

(∨)
ϕ ∨ ψ; Γ

ϕ; Γ | ψ; Γ

Let M1,M2 be the marking sets of the left and right child
respectively.

Mparent =

{
M1 ∪M2 ∪ {ϕ ∨ ψ} if ϕ ∈M1 or ψ ∈M2

M1 ∪M2 otherwise

(♦)
♦D;�B; Γ

ϕ0;B‖ . . . ‖ϕn;B

Let C be the first child which is unsatisfiable, and Mc the
corresponding marking set.

Mparent = ♦(C.head) ∪�(C.tail ∩Mc)

.

Backjumping

(∨)
ϕ ∨ ψ; Γ

ϕ; Γ | ψ; Γ

Theorem (jumping)
If the left principal formula (i.e., ϕ) in the (∨) rule is not in the
marking set of the left child, then the parent is unsatisfiable.

Theorem (marking property)
For each node ϕ; Γ, if ϕ is not in its marking set, then Γ is
unsatisfiable.

Backjumping

The marking property in its original form is awkward to prove.
Think about the (∧) rule:

(∧)
ϕ ∧ ψ; Γ

ϕ;ψ; Γ

Assumption: ϕ ∧ ψ is not marked.
IH: the child satisfies the marking property.
Goal: Γ is unsatisfiable.

With structural induction we can show that ψ; Γ is unsatisfiable.
But we need induction on the height of tableau trees to go further.

Now we have to cook up customized inductive principles which are
likely to be inelegant.

Backjumping

Theorem (marking property revisited)
For each node Γ, if a subset ∆ ⊆ Γ contains nothing in the
marking set, then Γ−∆ is unsatisfiable.

Proof.
By structural induction on the tableau.

But we have a big problem for the formalization: there is nothing
to do induction on!

Recall the type of our tableau:

def tableau : Π Γ : list nnf, node Γ := sorry

It is a pure function.

Backjumping

Observation:

The function calls itself recursively. This sounds like a
computational induction.

Idea:

Encode the inductive hypothese into the recursive calls. The
tableau computes the proof. Each node propagates its proof to its
parent so that the parent can use the proofs to construct its own
proof.

With a strong type system, we can do this as proofs can be treated
as data, and the property can be depending on a term (i.e., the
marking set).

Backjumping

The inductive hypothesis is defined as:

def pmark (Γ m : list nnf) :=
∀ ∆, (∀ δ ∈ ∆, δ /∈ m) →
∆ <+ Γ →
unsatisfiable (list.diff Γ ∆)

We now force each closed node to carry a marking set with a proof
of pmark.

inductive node (Γ : list nnf) : Type
| closed : Π m, unsatisfiable Γ → pmark Γ m → node
| open_ : {s // sat builder s Γ} → node

Backjumping

Now it is safe to write our new rule:

(J)
ϕ ∨ ψ; Γ

ϕ; Γ
if ϕ /∈Mchild and ϕ; Γ is unsatisfiable

Note that since this is a new rule, we need to go back to define its
parent’s marking set and show that it respects the marking property.

Backjumping

Now we are ready to define our tableau.

It applies propositional rules and the jumping rule repeatedly to Γ.
If a contradiction is found, it propagates the proof to the parent
node. If Γ is fully saturated and contains at least one diamond, it
applies the modal rule. If it reaches a node containing a
model_constructible Γ, it constructs a Kripke model and
propagates it to the parent node. This procedure terminates
because it is provable that each recursive call is called on a smaller
node.

Applications

structure topo_model (α : Type) extends
topological_space α :=

(v : N → set α)
(is_alex : ∀s, (∀t∈s, is_open t) → is_open (

⋂
0 s))

def topo_force {α : Type} (tm : topo_model α) :
α → nnf → Prop

| s (var n) := tm.v n s
| s (neg n) := ¬ tm.v n s
| s (and ϕ ψ) := topo_force s ϕ ∧ topo_force s ψ
| s (or ϕ ψ) := topo_force s ϕ ∨ topo_force s ψ
| s (box ϕ) := @interior _ tm.to_topological_space

(λ a, topo_force a ϕ) s
| s (dia ϕ) := @closure _ tm.to_topological_space

(λ a, topo_force a ϕ) s

Applications

def topo_to_kripke {α : Type} (tm : topo_model α) :
kripke α :=

{ rel := λ s t, s ∈ @closure _
tm.to_topological_space {t},

val := λ n s, tm.v n s }

theorem trans_force_left {α : Type}
{tm : topo_model α} :
Π {s} {ϕ : nnf}, (topo_force tm s ϕ) →
force (topo_to_kripke tm) s ϕ := sorry

Thoughts

The whole formalization is a single definition of the function
tableau. In this sense it is really a program. We can see that
proofs and programs coerce.

Constructing a (proof) term of the type of tableau amounts to
writing a program that has the same return type. In particular, we
can make such a program efficient via the proofs it carries.

In a strong type system, proof searching and program synthesis are
almost the same.

Dependent types are used almost everywhere in this formalization,
especially for the purpose of carrying proofs to prove correctness.
They also provide a trick for telling the compiler about termination.

	Vanilla Tableau
	Formalization
	Backjumping

