
Reinforcement Learning for Interactive Theorem
Proving in HOL4

Minchao Wu1 Michael Norrish1,2 Christian Walder1,2 Amir
Dezfouli2

1Research School of Computer Science
Australian National University

2Data61, CSIRO

September 14, 2020

Overview

I Interface: HOL4 as an RL environment
I Enables interaction with HOL4.
I Monitor proof states on the Python side.

I Reinforcement learning settings

I Policies for choosing proof states, tactics, and theorems or
terms as arguments.

I Learning: policy gradient

Overview

I Interface: HOL4 as an RL environment
I Enables interaction with HOL4.
I Monitor proof states on the Python side.

I Reinforcement learning settings

I Policies for choosing proof states, tactics, and theorems or
terms as arguments.

I Learning: policy gradient

Overview

I Interface: HOL4 as an RL environment
I Enables interaction with HOL4.
I Monitor proof states on the Python side.

I Reinforcement learning settings
I Policies for choosing proof states, tactics, and theorems or

terms as arguments.

I Learning: policy gradient

Overview

I Interface: HOL4 as an RL environment
I Enables interaction with HOL4.
I Monitor proof states on the Python side.

I Reinforcement learning settings
I Policies for choosing proof states, tactics, and theorems or

terms as arguments.
I Learning: policy gradient

Environment

I An environment can be created by specifying an initial goal.

e = HolEnv(GOAL)

I An environment can be reset by providing a new goal.

e.reset(GOAL2)

I The basic function is querying HOL4 about tactic applications.

e.query("∀l. NULL l ⇒ l = []", "strip_tac")

Environment

The e.step(action) function applies action to the current state
and generates the new state.

e.step(action)

step takes an action and returns the immediate reward received,
and a Boolean value indicating whether the proof attempt has
finished.

Demo

I A quick demo.

RL Formalization

I A goal g ∈ G is a HOL4 proposition.

I A fringe is a finite set of goals.

I A fringe consists of all the remaining goals.
I The main goal is proved if everything in any one fringe is

discharged.

I A state s is a finite sequence of fringes.

I A fringe can be referred by its index i, i.e., s(i).

I A reward is a real number r ∈ R.

RL Formalization

I A goal g ∈ G is a HOL4 proposition.
I A fringe is a finite set of goals.

I A fringe consists of all the remaining goals.
I The main goal is proved if everything in any one fringe is

discharged.
I A state s is a finite sequence of fringes.

I A fringe can be referred by its index i, i.e., s(i).

I A reward is a real number r ∈ R.

RL Formalization

I A goal g ∈ G is a HOL4 proposition.
I A fringe is a finite set of goals.

I A fringe consists of all the remaining goals.

I The main goal is proved if everything in any one fringe is
discharged.

I A state s is a finite sequence of fringes.

I A fringe can be referred by its index i, i.e., s(i).

I A reward is a real number r ∈ R.

RL Formalization

I A goal g ∈ G is a HOL4 proposition.
I A fringe is a finite set of goals.

I A fringe consists of all the remaining goals.
I The main goal is proved if everything in any one fringe is

discharged.

I A state s is a finite sequence of fringes.

I A fringe can be referred by its index i, i.e., s(i).

I A reward is a real number r ∈ R.

RL Formalization

I A goal g ∈ G is a HOL4 proposition.
I A fringe is a finite set of goals.

I A fringe consists of all the remaining goals.
I The main goal is proved if everything in any one fringe is

discharged.
I A state s is a finite sequence of fringes.

I A fringe can be referred by its index i, i.e., s(i).

I A reward is a real number r ∈ R.

RL Formalization

I A goal g ∈ G is a HOL4 proposition.
I A fringe is a finite set of goals.

I A fringe consists of all the remaining goals.
I The main goal is proved if everything in any one fringe is

discharged.
I A state s is a finite sequence of fringes.

I A fringe can be referred by its index i, i.e., s(i).

I A reward is a real number r ∈ R.

RL Formalization

I A goal g ∈ G is a HOL4 proposition.
I A fringe is a finite set of goals.

I A fringe consists of all the remaining goals.
I The main goal is proved if everything in any one fringe is

discharged.
I A state s is a finite sequence of fringes.

I A fringe can be referred by its index i, i.e., s(i).

I A reward is a real number r ∈ R.

Examples

Fringe 0
0: p ∧ q ⇒ p ∧ q

Fringe 1
0: p ⇒ q ⇒ p
1: p ⇒ q ⇒ q

Figure: Example fringes and states

RL Formalization

I An action is a triple (i, j, t) : N× N× tactic.

I i selects the ith fringe in a state s.
I j selects the jth goal within fringe s(i).
I t is a HOL4 tactic.

I Example: (0, 0, fs[listTheory.MEM])

I Rewards
I Successful application: 0.1
I Discharges the current goal completely: 0.2
I Main goal proved: 5
I Otherwise: -0.1

RL Formalization

I An action is a triple (i, j, t) : N× N× tactic.
I i selects the ith fringe in a state s.

I j selects the jth goal within fringe s(i).
I t is a HOL4 tactic.

I Example: (0, 0, fs[listTheory.MEM])

I Rewards
I Successful application: 0.1
I Discharges the current goal completely: 0.2
I Main goal proved: 5
I Otherwise: -0.1

RL Formalization

I An action is a triple (i, j, t) : N× N× tactic.
I i selects the ith fringe in a state s.
I j selects the jth goal within fringe s(i).

I t is a HOL4 tactic.

I Example: (0, 0, fs[listTheory.MEM])

I Rewards
I Successful application: 0.1
I Discharges the current goal completely: 0.2
I Main goal proved: 5
I Otherwise: -0.1

RL Formalization

I An action is a triple (i, j, t) : N× N× tactic.
I i selects the ith fringe in a state s.
I j selects the jth goal within fringe s(i).
I t is a HOL4 tactic.

I Example: (0, 0, fs[listTheory.MEM])

I Rewards
I Successful application: 0.1
I Discharges the current goal completely: 0.2
I Main goal proved: 5
I Otherwise: -0.1

RL Formalization

I An action is a triple (i, j, t) : N× N× tactic.
I i selects the ith fringe in a state s.
I j selects the jth goal within fringe s(i).
I t is a HOL4 tactic.

I Example: (0, 0, fs[listTheory.MEM])

I Rewards
I Successful application: 0.1
I Discharges the current goal completely: 0.2
I Main goal proved: 5
I Otherwise: -0.1

RL Formalization

I An action is a triple (i, j, t) : N× N× tactic.
I i selects the ith fringe in a state s.
I j selects the jth goal within fringe s(i).
I t is a HOL4 tactic.

I Example: (0, 0, fs[listTheory.MEM])

I Rewards
I Successful application: 0.1
I Discharges the current goal completely: 0.2
I Main goal proved: 5
I Otherwise: -0.1

Example
Fringe 0

0: p ∧ q ⇒ p ∧ q

Fringe 1
0: p ⇒ q ⇒ p
1: p ⇒ q ⇒ q

Fringe 2
0: p ⇒ q ⇒ q

Fringe 4
QED

Fringe 3
0: p ⇒ q ⇒ q
1: F ⇒ q ⇒ F
2: T ⇒ q ⇒ T

(0,0,strip_tac)

(1,0,simp[])

(2,0,simp[])

(1,0,Induct_on `p`)

Figure: Example proof search

Example
Fringe 0

0: p ∧ q ⇒ p ∧ q

Fringe 1
0: p ⇒ q ⇒ p
1: p ⇒ q ⇒ q

Fringe 2
0: p ⇒ q ⇒ q

Fringe 4
QED

Fringe 3
0: p ⇒ q ⇒ q
1: F ⇒ q ⇒ F
2: T ⇒ q ⇒ T

(0,0,strip_tac)

(1,0,simp[])

(2,0,simp[])

(1,0,Induct_on `p`)

Figure: Example proof search

Example
Fringe 0

0: p ∧ q ⇒ p ∧ q

Fringe 1
0: p ⇒ q ⇒ p
1: p ⇒ q ⇒ q

Fringe 2
0: p ⇒ q ⇒ q

Fringe 4
QED

Fringe 3
0: p ⇒ q ⇒ q
1: F ⇒ q ⇒ F
2: T ⇒ q ⇒ T

(0,0,strip_tac)

(1,0,simp[])

(2,0,simp[])

(1,0,Induct_on `p`)

Figure: Example proof search

Example
Fringe 0

0: p ∧ q ⇒ p ∧ q

Fringe 1
0: p ⇒ q ⇒ p
1: p ⇒ q ⇒ q

Fringe 2
0: p ⇒ q ⇒ q

Fringe 4
QED

Fringe 3
0: p ⇒ q ⇒ q
1: F ⇒ q ⇒ F
2: T ⇒ q ⇒ T

(0,0,strip_tac)

(1,0,simp[])

(2,0,simp[])

(1,0,Induct_on `p`)

Figure: Example proof search

Example
Fringe 0

0: p ∧ q ⇒ p ∧ q

Fringe 1
0: p ⇒ q ⇒ p
1: p ⇒ q ⇒ q

Fringe 2
0: p ⇒ q ⇒ q

Fringe 4
QED

Fringe 3
0: p ⇒ q ⇒ q
1: F ⇒ q ⇒ F
2: T ⇒ q ⇒ T

(0,0,strip_tac)

(1,0,simp[])

(2,0,simp[])

(1,0,Induct_on `p`)

Figure: Example proof search

Choosing fringes

An action is a triple (i, j, t). Given state s.
I A value network Vgoal : G→ R.

I The value vi of fringe s(i) is defined by:

vi = Σg∈s(i)Vgoal(g)

I Sample from the following distribution

πfringe(s) = Softmax(v1, ..., v|s|)

I By default, j is fixed to be 0. That is, we always deal with the
first goal in a fringe.

Choosing fringes

An action is a triple (i, j, t). Given state s.
I A value network Vgoal : G→ R.
I The value vi of fringe s(i) is defined by:

vi = Σg∈s(i)Vgoal(g)

I Sample from the following distribution

πfringe(s) = Softmax(v1, ..., v|s|)

I By default, j is fixed to be 0. That is, we always deal with the
first goal in a fringe.

Choosing fringes

An action is a triple (i, j, t). Given state s.
I A value network Vgoal : G→ R.
I The value vi of fringe s(i) is defined by:

vi = Σg∈s(i)Vgoal(g)

I Sample from the following distribution

πfringe(s) = Softmax(v1, ..., v|s|)

I By default, j is fixed to be 0. That is, we always deal with the
first goal in a fringe.

Choosing fringes

An action is a triple (i, j, t). Given state s.
I A value network Vgoal : G→ R.
I The value vi of fringe s(i) is defined by:

vi = Σg∈s(i)Vgoal(g)

I Sample from the following distribution

πfringe(s) = Softmax(v1, ..., v|s|)

I By default, j is fixed to be 0. That is, we always deal with the
first goal in a fringe.

Generating tactics

Suppose we are dealing with goal g.
I A tactic is either

I A tactic name followed by a list of theorem names, or
I A tactic name followed by a list of terms

I A value network
Vtactic : G→ RD

where D is the total number of tactic names allowed.
I Sample from the following distribution

πtactic(g) = Softmax(Vtactic(g))

Generating tactics

Suppose we are dealing with goal g.
I A tactic is either

I A tactic name followed by a list of theorem names, or

I A tactic name followed by a list of terms

I A value network
Vtactic : G→ RD

where D is the total number of tactic names allowed.
I Sample from the following distribution

πtactic(g) = Softmax(Vtactic(g))

Generating tactics

Suppose we are dealing with goal g.
I A tactic is either

I A tactic name followed by a list of theorem names, or
I A tactic name followed by a list of terms

I A value network
Vtactic : G→ RD

where D is the total number of tactic names allowed.
I Sample from the following distribution

πtactic(g) = Softmax(Vtactic(g))

Generating tactics

Suppose we are dealing with goal g.
I A tactic is either

I A tactic name followed by a list of theorem names, or
I A tactic name followed by a list of terms

I A value network
Vtactic : G→ RD

where D is the total number of tactic names allowed.

I Sample from the following distribution

πtactic(g) = Softmax(Vtactic(g))

Generating tactics

Suppose we are dealing with goal g.
I A tactic is either

I A tactic name followed by a list of theorem names, or
I A tactic name followed by a list of terms

I A value network
Vtactic : G→ RD

where D is the total number of tactic names allowed.
I Sample from the following distribution

πtactic(g) = Softmax(Vtactic(g))

Argument policy

Policy

x0

a0

h0

v0

so
ft

m
ax

Policy

x1

a1

h1

v1

Policy

xt

at vt

so
ft

m
ax

at+1

ht+1

. . .

Figure: Generation of arguments. xi is the candidate theorems. hi is a
hidden variable. ai is a chosen argument. vi is the values computed by
the policy. Each theorem is represented by an N -dimensional tensor
based on its tokenized expression in Polish notation. If we have M
candidate theorems, then the shape of xi is M ×N . The representations
are computed by a separately trained transformer.

Generating arguments

Generation of arguments

Given a chosen goal g. Each theorem is represented by an N -
dimensional tensor based on its tokenized expression. Suppose
we have M candidate theorems.
Input: the chosen tactic or theorem t ∈ RN , the candidate
theorems X ∈ RM×N and a hidden variable h ∈ RN .
Policy: Varg : RN × RM×N × RN → RN × RM
Initialize hidden variable h to t.
l← [t].

Loop for allowed length of arguments (e.g., 5):
h, v← Varg(t,X, h)
t← sample from πarg(g) = Softmax(v)
l← l.append(t)

Return l and the associated (log) probabilities.

Generating actions

Given state s, we now have some (log) probabilities.
I p(f |s) given by πfringe.

I p(t|s, f) given by πtactic.
I p0(c0|s, f, t), ..., pl−1(cl−1|s, f, t, cl−2) given by πarg, where l

is the length of arguments, and cl = (c0, ..., cl−1).
I Let a be the chosen action. Now we have

πθ(a|s) = p(f |s)p(t|s, f)p0(c0|s, f, t)
l−1∏
i=1

pi(ci|s, f, t, ci−1)

where θ is the parameters of {Vgoal, Vtactic, Varg}.

Generating actions

Given state s, we now have some (log) probabilities.
I p(f |s) given by πfringe.
I p(t|s, f) given by πtactic.

I p0(c0|s, f, t), ..., pl−1(cl−1|s, f, t, cl−2) given by πarg, where l
is the length of arguments, and cl = (c0, ..., cl−1).

I Let a be the chosen action. Now we have

πθ(a|s) = p(f |s)p(t|s, f)p0(c0|s, f, t)
l−1∏
i=1

pi(ci|s, f, t, ci−1)

where θ is the parameters of {Vgoal, Vtactic, Varg}.

Generating actions

Given state s, we now have some (log) probabilities.
I p(f |s) given by πfringe.
I p(t|s, f) given by πtactic.
I p0(c0|s, f, t), ..., pl−1(cl−1|s, f, t, cl−2) given by πarg, where l

is the length of arguments, and cl = (c0, ..., cl−1).

I Let a be the chosen action. Now we have

πθ(a|s) = p(f |s)p(t|s, f)p0(c0|s, f, t)
l−1∏
i=1

pi(ci|s, f, t, ci−1)

where θ is the parameters of {Vgoal, Vtactic, Varg}.

Generating actions

Given state s, we now have some (log) probabilities.
I p(f |s) given by πfringe.
I p(t|s, f) given by πtactic.
I p0(c0|s, f, t), ..., pl−1(cl−1|s, f, t, cl−2) given by πarg, where l

is the length of arguments, and cl = (c0, ..., cl−1).
I Let a be the chosen action. Now we have

πθ(a|s) = p(f |s)p(t|s, f)p0(c0|s, f, t)
l−1∏
i=1

pi(ci|s, f, t, ci−1)

where θ is the parameters of {Vgoal, Vtactic, Varg}.

Baseline

REINFORCE(Williams (1988, 1992)):

We jointly train the policies:

θ ← θ + αγtGt∇θ lnπθ(At|St)

given a trajectory S1, A1, R1, S2, A2, . . . , ST .

Experiment with list

I 444 basic theorems from list theory.

I A small set of tactics.
I simp, fs, metis_tac, rw
I irule, drule
I Induct_on
I strip_tac, EQ_TAC

I Only theorems that come before target g in library are allowed
to be used to prove g.

I A limited number of theorems are provable using this set of
tactics (190∼/443).

Experiment with list

I 444 basic theorems from list theory.
I A small set of tactics.

I simp, fs, metis_tac, rw
I irule, drule
I Induct_on
I strip_tac, EQ_TAC

I Only theorems that come before target g in library are allowed
to be used to prove g.

I A limited number of theorems are provable using this set of
tactics (190∼/443).

Experiment with list

I 444 basic theorems from list theory.
I A small set of tactics.

I simp, fs, metis_tac, rw
I irule, drule
I Induct_on
I strip_tac, EQ_TAC

I Only theorems that come before target g in library are allowed
to be used to prove g.

I A limited number of theorems are provable using this set of
tactics (190∼/443).

Experiment with list

I 444 basic theorems from list theory.
I A small set of tactics.

I simp, fs, metis_tac, rw
I irule, drule
I Induct_on
I strip_tac, EQ_TAC

I Only theorems that come before target g in library are allowed
to be used to prove g.

I A limited number of theorems are provable using this set of
tactics (190∼/443).

Preliminary results

success/iter
success rate

w.r.t total provable
success rate
on validation

Random
rollouts

42 21.2% 38.3%

Trained
agent

149 75.3% 87.5%

Figure: An agent trained for 1000 iters performs significantly better than
guessing. In each iteration, only one attempt for each theorem is allowed.
There are 444 theorems in total and 198 of them are provable using the
specified set of tactics. The validation set consists of equivalent forms of
20 easy theorems in the training set.

Preliminary results

Figure: A typical training curve. In this experiment, the training set
contains 87 theorems that are all provable. The performance of the agent
keeps improving as training continues.

	Overview
	Environment
	RL Formalization

